Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint.
نویسندگان
چکیده
Flagellum formation in Caulobacter crescentus requires ca. 50 flagellar genes, most of which belong to one of three classes (II, III, or IV). Epistasis experiments suggest that flagellar gene expression is coordinated with flagellum biosynthesis by two assembly checkpoints. Completion of the M/S ring-switch complex is required for the transition from class II to class III gene expression, and completion of the basal body-hook structure is required for the transition from class III to class IV gene expression. In studies focused on regulation of the class IV flagellin genes, we have examined fljK and fljL expression in a large number of flagellar mutants by using transcription and translation fusions to lacZ, nuclease S1 assays, and measurements of protein stability. The fljK-lacZ and fljL-lacZ transcription fusions were expressed in all class III flagellar mutants, although these strains do not make detectable 25- or 27-kDa flagellins. The finding that the fljK-lacZ translation fusion was not expressed in the same collection of class III mutants confirmed that fljK is regulated posttranscriptionally. The requirement of multiple class III genes for expression of the fljK-lacZ fusion suggests that completion of the basal body-hook is an assembly checkpoint for the posttranscriptional regulation of this flagellin gene. Deletion analysis within the 5' untranslated region of fljK identified a sequence between +24 and +38 required for regulation of the fljK-lacZ fusion by class III genes, which implicates an imperfect 14-bp direct repeat in the posttranscriptional regulation of fljK. Our results show that fljL is also regulated posttranscriptionally by class III and unclassified flagellar genes, apparently by a mechanism different from the one regulating fljK.
منابع مشابه
A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
The transcription of flagellar genes in Caulobacter crescentus is regulated by cell cycle events that culminate in the synthesis of a new flagellum once every cell division. Early flagellar gene products regulate the expression of late flagellar genes at two distinct stages of the flagellar trans-acting hierarchy. Here we investigate the coupling of early flagellar biogenesis with middle and la...
متن کاملFlbT couples flagellum assembly to gene expression in Caulobacter crescentus.
The biogenesis of the polar flagellum of Caulobacter crescentus is regulated by the cell cycle as well as by a trans-acting regulatory hierarchy that functions to couple flagellum assembly to gene expression. The assembly of early flagellar structures (MS ring, switch, and flagellum-specific secretory system) is required for the transcription of class III genes, which encode the remainder of th...
متن کاملA family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament.
The Caulobacter crescentus flagellar filament is assembled from multiple flagellin proteins that are encoded by six genes. The amino acid sequences of the FljJ and FljL flagellins are divergent from those of the other four flagellins. Since these flagellins are the first to be assembled in the flagellar filament, one or both might have specialized to facilitate the initiation of filament assembly.
متن کاملFlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5' untranslated region of flagellin mRNA.
Flagellar gene expression' in Caulobacter crescentus is regulated by a complex trans-acting hierarchy, in which the assembly of early structural proteins is required for the expression of later structural proteins. The flagellins that comprise the filament are regulated at both the transcriptional and the post-transcriptional levels. Post-transcriptional regulation is sensitive to the assembly ...
متن کاملMolecular genetics of the flgI region and its role in flagellum biosynthesis in Caulobacter crescentus.
The differentiating bacterium Caulobacter crescentus has been studied extensively to understand how a relatively simple life form can govern the timing of expression of genes needed for the production of stage-specific structures. In this study, a clone containing the 5.3-kb flaP region was shown to contain the flgI, cheL, and flbY genes arranged in an operon with transcription proceeding from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 179 7 شماره
صفحات -
تاریخ انتشار 1997